
 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 1

Lab #4: Finite State Machines (FSMs)

0. GOALS

In this lab, you will design a finite state machine (FSM) in SystemVerilog, simulate it using

ModelSim, and then test it in hardware using your DE2-115 board.

You will complete the following steps in this lab:

1. Design an FSM in SystemVerilog

2. Simulate your FSM using a provided testbench in ModelSim

3. Test your FSM in hardware on the FPGA board using Quartus II

4. Submission Instructions

Be sure to read the “What to Turn In” (Section 4) at the end of the lab before beginning the lab.

Important: Most everyone should be currently enrolled in CpE 200. If you are not currently

enrolled in CpE 200 (i.e., you took it in a prior semester), you may view the videos, lecture

slides, and example SystemVerilog files on CPE 200L’s Canvas page.

As always, be sure to start and finish the lab early so that you have enough time to work through

your issues and/or have time to ask for help.

1. DESIGN AN FSM IN SYSTEMVERILOG

Design a finite state machine (FSM) in SystemVerilog to control the taillights of a 1965 Ford

Thunderbird1. There are three lights on each side that operate in sequence to indicate the direction

of a turn. Figure 1 shows the taillights and Figure 2 shows the flashing sequence for (a) left turns

and (b) right turns.

ZOTTFFS

CALIFORNIA

RA RB RCLC LB LA

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 1. Thunderbird Tail Lights

1 This FSM is derived from an example by John Wakerly from the 3rd Edition of Digital Design.

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 2

LC(a) LB LA RA(b) RB RC

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Figure 2. Flashing Sequence (shaded lights are illuminated)

If you follow the steps of FSM design carefully and ask questions at the beginning if a part is

confusing, you will save yourself a great deal of time.

Your FSM should be a Moore FSM and should have the following module declaration:

module thunderbird(input logic clk,

 input logic reset,

 input logic left, right,

 output logic lc, lb, la, ra, rb, rc);

You may assume that clk runs at the desired speed (e.g. about 1 Hz).

State Transition Diagram

On reset, the FSM should enter a state with all lights off. When you press left, you should see la,

then la and lb, then la, lb, and lc, then finally all lights off again. This pattern should occur even if

you release left during the sequence. If left is still down when you return to the lights off state, the

pattern should repeat. right is similar. It is up to you to decide what to do if the user makes left

and right simultaneously true; make a choice to keep your design easy. (For example, in a car, it’s

physically impossible to have both left and right selected at the same time when selecting for turn

signals.)

Sketch a state transition diagram.

At this point, you could write state transition and output tables and then a set of next state and

output equations as you’ve done in CpE 200 homework. Instead, you will design it in

SystemVerilog and let the synthesis tool choose the gate-level implementation.

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 3

SystemVerilog Entry

Create a new SystemVerilog HDL file and save it as thunderbird.sv. Enter SystemVerilog

code for your FSM. Remember, you can use any text editor (for example, Notepad++) to write

your .sv file.

2. SIMULATE FSM WITH TESTBENCH

Use the testbench_fsm.sv file from Canvas to simulate your FSM in ModelSim. The combinational

circuit in Lab 3 used a testbench with a testvector file. This time you will use the testbench itself

to set the inputs and toggle the clock; then you will check the outputs manually by viewing the

waveform. Open the testbench_fsm.sv file (available on Canvas) and make sure you understand

what it does. This testbench toggles the inputs separated by delays in the initial block. You will

then manually view the outputs in the waveform to see that they look as expected. Open ModelSim

and create a new project. Add existing SystemVerilog files: thunderbird.sv and testbench_fsm.sv.

Compile these files as you did in Lab 3. If there are any errors or warnings (see the Transcript

pane), fix them and recompile.

When both files compile, simulate the testbench (not the thunderbird module). Do this by clicking

on Simulate → Start Simulation in the File menu (see Figure 3 below).

Figure 3. Start simulation in ModelSim

Now expand the work folder. Select (click on) testbench_fsm, and click OK (see Figure 4 below).

Figure 4. Select testbench_fsm to simulate

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 4

Click on the Wave pane (if you don’t see a Wave tab, click on View → Wave from the top File

menu). Drag all the signals from the Objects pane into the Wave window (click, shift-click and

then drag to the Wave pane). Now type ‘run 400’ in the Transcript pane. This will run the testbench

for 400 simulation ticks. View the waveform and make sure it looks as expected. If it doesn’t,

revise your FSM in thunderbird.sv, recompile and resimulate. Remember that you can view

additional signals (other than the inputs and outputs) by drilling down into the hierarchy and

viewing the signals (including internal signals) of lower-level modules. For example, you may

want to view the state or nextstate signals.

To view and open your SystemVerilog files after you have started your simulation, click on the

Project tab as shown in Figure 5.

Figure 5. .sv files in Project tab

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 5

After you’ve made changes and recompiled your files, restart the simulation (i.e., reload the

updated SystemVerilog module(s)) by clicking on the Restart button at the top of the ModelSim

window. . You can also use the Zoom buttons to navigate the Wave

window and view the waveform: . Zoom Full allows you to see the entire

waveform.

The Toggle Leaf Names <-> Full Names button allows you to shorten the signal names to not show

the module name / hierarchy (see Figure 6).

Figure 6. View signal names only

You’ll probably have errors in your SystemVerilog file at first. Get used to interpreting the

messages from ModelSim and correct any mistakes. In fact, it’s good if you have bugs in this lab

because it’s easier to learn debugging now than later when you are working with a larger system!

3. TEST FSM IN HARDWARE

Now you will download your FSM onto the DE2-115 board and test it in hardware. Create a new

project in Quartus II (refer to Lab 3 instructions if needed). Be sure to target the correct FPGA.

Name the project thunderbird_wrapper. In addition to adding your thunderbird.sv file to the

project, also add the thunderbird_wrapper.sv file (available on Canvas).

The thunderbird_wrapper module maps the interface of the Thunderbird FSM to the pushbuttons,

switches, and LEDs on the DE2-115 FPGA board. In the last lab, you manually added pin

assignments. In this lab, you will use the wrapper module and a Quartus Settings File (.qsf) to

import and map the pin assignments. A wrapper module essentially renames a module’s interface

pins to what is expected in the pin assignment file. In this case, we will map the FSM’s interface

signals as shown in Table 1 and Figure 7.

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 6

Table 1. Thunderbird FSM to DE2-115 board assignments

thunderbird signal name DE2-115 Board signal name Description

clk KEY[0] Right-most pushbutton

reset SW[0] Right-most toggle switch

(i.e., toggle switch[0])

right SW[1] Toggle switch[1]

left SW[2] Toggle switch[2]

lc LEDR[5] Red LED[5]

lb LEDR[4] Red LED[4]

la LEDR[3] Red LED[3]

ra LEDR[2] Red LED[2]

rb LEDR[1] Red LED[1]

rc LEDR[0] Red LED[0]

lc lb la ra rb rc

KEY[0] = clk

Red LEDs

Switches

Power button

Programming cable
connector

Power connector

reset

right

left

Figure 7. DE2-115 Board Interface to the Thunderbird FSM

After creating the thunderbird_wrapper project, you will map the signal names (KEY[0], SW[0],

etc.) to the FPGA pins to which those peripherals (pushbuttons, switches, etc.) are physically

connected. You will do this by importing the de2_115.qsf (Quartus Settings File). This file is

available and should be downloaded from Canvas. Open that file in any text editor (for example,

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 7

Notepad++), to view its contents. For example, the following line (found in the middle of the file)

assigns PIN G19 of the FPGA to signal LEDR[0]:

set_location_assignment PIN_G19 -to LEDR[0]

That LED (LEDR[0], i.e., the right-most red LED) is physically connected to PIN G19 on the

FPGA using a trace (a wire printed on the printed circuit board: PCB) between the FPGA and the

LED.

Earlier in the file, the voltage level of that pin was set using this text:

set_instance_assignment -name IO_STANDARD "2.5 V" -to LEDR[0]

In this lab, we will use only a subset of the peripherals available on the DE2-115 board. Although

we will not be using all the I/O (i.e., peripherals) in this lab, this .qsf file defines the pin connections

of all the I/O available on the DE2-115 board for your future use and reference.

Import Pin Assignments

Import the pin assignments from the qsf file by clicking on Assignments → Import Assignments,

as shown in Figure 8.

Figure 8. Importing pin assignments

In the next window, browse to where you have placed the de2_115.qsf file (see Figure 9). Select

that file (click on it) and click Open.

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 8

Figure 9. Importing pin assignments in the de2_115.qsf file

In the next window, you can leave the Copy existing… box selected (see Figure 10). Then click

OK.

Figure 10. Importing pin assignments – last step

Now you are ready to compile the design (). View the messages page on the bottom of the

Quartus II window and fix any errors. Note that you will see some warnings that you can ignore:

for example, “Timing requirements not met” (there were no timing requirements), “Ignored

locations or region assignments to the following nodes” (if you expand that warning, you will see

all the pin assignments/signals that were not used in your design but that were in the .qsf file).

View Synthesis Results

View the RTL (register transfer logic) – gates and registers – that your SystemVerilog synthesized

to by clicking on Tools → Netlist Viewers → RTL Viewer. A net is a node (signal) and a netlist

is a list of nodes and their connections.

Figure 11. View RTL created by synthesis tool

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 9

You should see the figure shown in Figure 12. You can then click on the module (in this case

thunderbird: tb) to view lower levels of the hierarchy. When you click on the FSM itself (i.e., the

next state logic and the state register), it will show you a state transition diagram. View what your

SystemVerilog module synthesized to and make sure it makes sense. If not, fix any errors and

recompile (i.e., resynthesize).

Figure 12. View circuit created by synthesis tool

Under the Flow Summary, look at the resource utilization summary. Check that the number of

register and I/O pins matches your expectations. Notice that the number of registers may be more

than the number you specified – the synthesis tool may choose a different state encoding than you

suggested in your .sv file. If you wanted a specific state encoding, you would need to specifically

encode the state register, next state logic, and output logic using gates and registers.

Download Design and Test It in Hardware

Download the design to the DE2-115 board. Check the wrapper, Table 1, and Figure 7 to see which

buttons and switches are used for which inputs. Note that a pushbutton switch is used to create a

clock. Test your design and watch the LEDs. Remember to reset the system before beginning your

testing.

Note: the toggle and pushbutton switches sometimes experience a phenomenon called bounce, in

which the mechanical contacts bounce as the switch is opening or closing, creating multiple rapid

rising and falling pulses rather than a single clock edge. If your lights seem to skip through

multiple states at a time, it is probably because of switch bounce on the clock switch. With a bit

of practice, you can learn to push the switch in a way that bounces less. It is also possible to build

a circuit to “debounce” a switch, but that is beyond the scope of this lab.

 CPE200L – DIGITAL LOGIC DESIGN II

__________ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ______________ 10

6. WHAT TO TURN IN

Total points available: 15

1) [1 pt] Please indicate how many hours you spent on this lab. This will be helpful for

calibrating the workload for next time the course is taught. Include any suggestions you

have for improving the lab. You will get one point for listing your time on each lab.

2) [14 pts total] Thunderbird FSM

a) [3 pts] Submit a clear sketch of your Thunderbird FSM state transition diagram.

b) [2 pts] Submit thunderbird.sv (as a separate file from your PDF submission).

c) [2 pts] Submit a screenshot of your Thunderbird FSM state transition diagram timing

waveform. Be sure to display the signals in this order (from top to bottom): clk,

reset, left, right, lc, lb, la, ra, rb, rc.

d) [2 pts] Take a picture of your FSM displaying ra, then ra and rb, then ra, rb, and

rc on the right-most LEDs (3 pictures). Clearly also show the “right” switch (SW[1])

being asserted.

e) [1 pts] Take a picture of your FSM displaying la, lb, and lc on LEDR[5:3] (1

picture). Clearly also show the “left” switch (SW[2]) being asserted.

f) [2 pts] Briefly describe how you tested the system on the DE2-115 board and whether

it worked according to the specifications. Did you observe switch bounce?

g) [2 pts] Write a brief paragraph about what you learned in this lab.

Please indicate any bugs you found in these lab instructions, or any suggestions you have to

improve the lab.

